
1. Introduction

1.1. Introduction

SemiSpace is a tuple space oriented towards being easy to integrate with existing technology.
The module semispace-main is the only module that you really need to have a dependency to,

and the libraries that this module depends on, are intended to be few.

This document will explain different configuration and usage strategies, and present a tutorial
which is a practical guide.

SemiSpace contains many modules and usage models. Try not to let that confuse you; Only
semispace-main is mandatory, the other modules are used on a need to have basis: If you do not
need the web services interface, disregard the module. If you do not want to use, or need, Spring,

use standard POJO code for your configuration.

1.1.1. Differences from traditional implementations.

Wikipedia gives an in depth discussion of what a Tuple Space is. SemiSpace's has a focus that is

slightly different from the the traditional implementations as the space itself is not perceived to be

separate from the client(s) VM(s). How you use it, is analogous, though. When having more than

one VM, Terracotta takes care of the distribution.

SemiSpace does not use the concept of client and server. Rather, the space is distributed over
the nodes present in the space.

Getter objects are supported as well as public fields. The JavaSpace standard only lets you play
with public fields, which is a nuisance if you want to use (possibly) auto-generated Hibernate

objects.

As long as your class can be streamed with XStream, you can put it into SemiSpace.

1.1.1.1. SemiSpace does not use Jini

SemiSpace does not require installation of a Jini server.

Jini is the crux of the standard JavaSpaces - which are the ones that implement the JavaSpace

interface. Jini uses JERI, which is a re-implementation of RMI. JERI supports dynamic stub

../../semispace-main/
../../semispace-main/dependencies.html
http://www.springframework.org/
http://en.wikipedia.org/wiki/Tuple_space
http://www.terracotta.org/
http://www.hibernate.org
http://xstream.codehaus.org
http://www.jini.org
http://www.jini.org/wiki/JavaSpaces_Specification
http://www.jini.org/wiki/JavaSpaces_Specification

-

generation, which is useful if you are adhering to the client / server idiom.

The methods you find in the SemiSpace interface, however, are analogous to the methods you
find in the JavaSpace interface. Presently JavaSpace05 is not considered. The differences
between the SemiSpace and JavaSpace interface, is mainly that the transaction object has been
removed, and that the return types may be different.

1.1.1.2. Terracotta is used for distribution

SemiSpace is bundled with a Terracotta Integration Module (TIM), which you can use in order to

distribute the contents of your space. Besides distribution, you have the benefit of not having to

create the configuration yourself.

1.1.1.3. SemiSpace uses XML

The transport and internal storage layer of SemiSpace is XML. This has the disadvantage of
bloating and transformation, but the advantage of not needing any dependencies on Java objects
when treating and using the space. This means that you can use the same space for several
purposes without worrying about getting ClassCastExceptions.

When you are using Java code directly on the space, the XML layer is hidden, and you can
concentrate on using the space in a manner which is the same as if you would use a Jini based

implementation.

1.1.1.4. Query on first level depth

SemiSpace allows a nested object structure, but queries are only performed on the first level. This
has the advantage have rather fat holder objects, whilst retaining the speed and functionality of
the space. This make the space usable for caching.

This implies, however, that you should model the holder objects of the space carefully, preparing
them with structures that contain record-like data, such as String and Integer. Large byte arrays,
for instance, on the first level is discouraged as it becomes one of the fields that are used for
identification - and as such is propagated over your servers.

1.1.1.5. All this implies:

You can interface the space from different languages (such as Ruby) without having to think

about Java Objects. The interfacing is performed with web services, in this case, and you will

http://www.terracotta.org
http://www.terracotta.org/confluence/display/docs/Terracotta+Integration+Modules+Manual
http://www.jini.org
http://www.ruby-lang.org

-

-

-

-

need to set up the web service end point.

Java implementation on different nodes do not need to have the same libraries available.

Use of SemiSpace is easy to junit test, as the space works well on a single VM.

When distributing with Terracotta, you do not be too concerned about tc-config.xml (the

Terracotta configuration file).

You can distribute Objects without taking the object depth into consideration. In other words,

can you have arbitrarily large and / or nested objects. Only the first level is used in matching,

though, and you still need to pay heed to network traffic overhead.

1.2. Do not distribute for its own sake

Much of the traditional view of tuple spaces concentrate on distribution of workload. Whereas this
can be a benefit, I often find it overrated. In order to benefit from distribution, you need an problem
which is scalable in itself. Amdahl's law explains that the speedup of a program using multiple

processors in parallel computing is limited by the sequential fraction of the program.

Additionally, you have the question of network pipe. Let's say you want to distribute image scaling.
With images having a "normal" compact camera size, you quickly begin to test the network
instead. On the other hand, you may remove load from the from end servers.

Everything has to be done for a reason, and figuring those reasons out in advance has it's benefit.

1.2.1. Not everything is a nail

It might be tempting to use tuple oriented problem solving on everything that needs distribution.
For instance, if you need a distributed file system and distributed processing, Hadoop with its

Map Reduce implementation might be more suitable. The converse is also true, of course. Map

reduce has its benefits, but is not suitable for all problems.

1.3. Reasons for using SemiSpace

Even though you can use SemiSpace on a standalone server, you benefit the most when you
distribute.

Distribution idioms are easy to implement and maintain, whether this is used for caching,
information gathering or maintenance of session information.

1.3.1. Failover and load balancing

http://en.wikipedia.org/wiki/Amdahls_law
http://hadoop.apache.org
http://en.wikipedia.org/wiki/Map_reduce

A fairly standard setup, is to have two or more front end servers accepting queries in a load
balanced manner. SemiSpace can be set up in order to make the the impact of adding a new
node minimal.

When having back end servers treating queries and data, you can add specialized processing
machines for treating workloads that are large. Consider having 5 nodes, and figuring out that
graph generation takes a lot of time. Re-assign one of the nodes, or add a new one, which is
dedicated to only graph generation. This can be quite simple if the task is not too interconnected
with the rest of the application.

1.3.2. Time bound processing

SemiSpace is similar to JavaSpace in that processing can be time bound. This has the benefit that
you can guarantee an answer (as no answer also is an answer). Lets say you have 10 elements
that need to be processed for you web page, and only the content retrieval is critical. The other
parts may be graphs, statistics or other non-critical information. You can setup your application to
await the content bulk, but disregard the rest if it has not finished processing.

Time bound processing is also useful when dealing with animations and other data that need to be
supplied in a tick-tock manner, i.e. regularly. You need to move the animation even if not all the
data is present.

1.3.3. Avoiding spiraling death

Let's say you have 5 front end servers. One of them gets a problem due to workload and goes
down. If this makes the other 4 servers fail, you have a spiraling death problem, and in effect, you
may need to take all servers out of commission while you correct the problem. (This actually is a
lot more common than you think.)

That servers bounce up and down is normal. The impact on the overall service should be
minimized. This can be done by having (that is, changing an existing) architecture to degrade
gracefully.

Lets say you have two components, content generation and graph generation. Content is critical,
and graph generation is not - even if it generates the most load. Let both generate their content in
a master / worker manner. Give content generation 10 workers and graph generation only 2
(multiply with factors as you see fit). The timeout for waiting for a graph should be reasonable. As
the graph generation now is load bound, one missing server does not take the other servers
down.

1.3.4. Inherent caching

If you are distributing queries, you may get an out-of-the box cache by simply first querying to find
if an equal query has already given a result. This is performed by not performing a take on the
space, but rather a read.

1.3.5. Divide and conquer your program

Even when you are not having load or distribution problems, you will benefit from dividing your
program into separate autonomous parts. This makes it easier for multiple programmers to divide
tasks between themselves.

2. Installation

2.1. Preliminaries

SemiSpace runs on J2SE 6.0 or greater. The other components are optional. If you are not

intending to distribute, you will not need Terracotta, etc.

If you want SemiSpace to be distributed, you need to download and install Terracotta.

In order to benefit from the webservices proxy (more about this in the tutorial), you need a
sensible endpoint. This is in effect a webapp. Choose this at your own discretion. The
recommendation is Jetty , but you should be effortlessly able to use Tomcat , or Geronimo as well.

It is presumed that you use bash as shell, most likely under MacOSX or Linux. Scripts and
instructions must be adapted at your discretion if you are running something else.

2.1.1. XStream support jars

XStream has some optional dependencies, and the XML support library xpp has been configured
to be default, but you can exclude it and include a different support library instead. See

http://xstream.codehaus.org/download.html for details, or just include the following in your maven

dependencies:

 <dependency>
 <groupId>xpp3</groupId>
 <artifactId>xpp3_min</artifactId>
 <version>1.1.4c</version>
 </dependency>

2.1.2. Sun jars

The persistence and webapp sub projects depend on sun jars, which you may have to download
and install yourself.

See Maven's guide to coping with Sun JARs for more information.

The semispace-main project does not have any such dependencies, indeed it is depends only on

XStream and slf4j logging.

http://java.sun.com/javase/6/docs/
http://www.terracotta.org
http://jetty.codehaus.org/jetty/
http://tomcat.apache.org
http://geronimo.apache.org/
http://xstream.codehaus.org/download.html
http://maven.apache.org
http://maven.apache.org/guides/mini/guide-coping-with-sun-jars.html
../dependencies.html
../dependencies.html

This chapter can be skipped, if you are not going to use Terracotta, or if you are not going to use
Terracotta right away.

This explanation is aimed at Terracotta version 3.4.1.

2.2. Configuration of Terracotta

You can use SemiSpace's tc-config as a starting point for your configuration.

You can download the configuration SemiSpace is set up to use from the subversion repository:
http://www.semispace.org/svn/trunk/tc-config.xml

The TIM version can be found here:

http://www.semispace.org/svn/trunk/tc-tim.xml

The configurations can be modified to your own needs. You find comments inside it which should
help you along. See Terracotta documentation for more information about configuration.

You want to set the environment variable TC_INSTALL_DIR pointing at the, surprise, installation
directory of Terracotta:

 export TC_INSTALL_DIR=<where you have exploded the terracotta-3.x.x.tar.gz file>

2.2.1. Using Maven for SemiSpace TIM reference

The easiest way of configuring SemiSpace for Terracotta, is to use Maven and add a
<repository/>section in your tc-config.xml. This tells Terracotta where it can find these modules:

 <modules>
 <!-- You only need jetty module if you are actually using jetty -->
 <module name="tim-jetty-6.1" version="2.2.1"/>
 <repository>%(user.home)/.m2/repository</repository>
 <module name="semispace-tim" version="1.3.0" group-id="org.semispace"/>
 </modules>

Notice that the bundle reference only works with released versions, as it does not manage to
parse "SNAPSHOT" as an integer.

--- assuming that your local Maven repository is at:

http://www.terracotta.org
http://www.semispace.org/svn/trunk/tc-config.xml
http://www.semispace.org/svn/trunk/tc-tim.xml

 ~/.m2/repository

2.2.2. Jetty TIM module

If you are going to use Jetty, you need the jetty TIM module for the Terracotta configuration, if this

has not already been installed. You can check and obtain it by doing as follows:

 $TC_INSTALL_DIR/bin/tim-get.sh list jetty
 $TC_INSTALL_DIR/bin/tim-get.sh install tim-jetty-6.1 2.2.1 org.terracotta.modules

2.2.3. Starting the server

Start the terracotta server with an invocation similar to:

 ${TC_INSTALL_DIR}/bin/start-tc-server.sh -f some/path/to/config/tc-config.xml

The server part of the configuration file may look something like this:

 <servers>

 <!-- When having remote clients in a multiserver setup, you _must_ give the host an IP
address -->
 <server host="%i" name="localhost">
 <dso-port>9510</dso-port>
 <jmx-port>9520</jmx-port>
 <l2-group-port>9530</l2-group-port>
 <data>/tmp/terracotta/server-data</data>
 <logs>/tmp/terracotta/server-logs</logs>
 <!-- If you are sharing disk space over nfs or NAS, or are running in single VM modus
 <dso>
 <persistence>
 <mode>permanent-store</mode>
 </persistence>
 </dso>
 -->
 <dso>
 <persistence>

http://www.terracotta.org/confluence/display/docs/tim-get

 <mode>temporary-swap-only</mode>
 </persistence>
 </dso>
 </server>
 <!-- If you have some other server available
 <server host="servername.some.domain" name="servername">
 <dso-port>9510</dso-port>
 <jmx-port>9520</jmx-port>
 <l2-group-port>9530</l2-group-port>
 <data>/tmp/terracotta/server-data</data>
 <logs>/tmp/terracotta/server-logs</logs>
 <dso>
 <persistence>
 <mode>temporary-swap-only</mode>
 </persistence>
 </dso>
 </server>
 -->
 <ha>
 <mode>networked-active-passive</mode>
 <networked-active-passive>
 <election-time>5</election-time>
 </networked-active-passive>
 </ha>
 </servers>
 <clients>
 <logs>terracotta/client-logs</logs>
 <!-- Load jetty-module. Notice that Eclipse integration will fail
 if TIM support has not been installed. The module version
 may exist in different versions-->
 <modules>
 <!-- module name="tim-jetty-6.1" version="2.2.1"/ -->
 <!-- module name="semispace-tim" version="1.3.0" group-id="org.semispace"/ -->
 </modules>
 </clients>

Notice that you need to exchange the "%i" with a real DNS name or IP address if you are using
remote clients that receive the configuration from the server. Otherwise they will simply not find
the server...

2.2.4. Sharing the configuration with clients

Clients need to use the same configuration as the Terracotta server. This is most easily performed
by letting the clients retrieve the configuration from the server (exchanging localhost with the
name of your real host if applicable):

 ${TC_INSTALL_DIR}/bin/dso-java.sh -Dtc.config=localhost:9510

In addition to the configuration of the Terracotta server itself, you need to either configure up
SemiSpace to use java objects, or to retrieve the space configuration from spring.

The Terracotta configuration can naturally be amended with your "other" configuration as well;
Just add it. This may be useful if you also want to, lets say, distribute the webapp session objects.

Notice that only some configuration highlights are presented here. You will benefit from reading
more about Terracotta on their home page.

2.2.5. POJO configuration

This is typically the configuration you will use outside a webapp. Note that this is not relevant if
you use the SemiSpace TIM, as the TIM will take care of the configuration for you.

If you prefer to obtain a distributed reference to Terracotta without using Spring, you need to add

the relevant SemiSpace specific class files.

The relevant configuration snippet for this is:

 <application>
 <dso>
 <!-- Could not share a common root between different
 contexts even when https://jira.terracotta.org/jira/browse/CDV-272
 indicates I can:
 <app-groups>
 <app-group name="space">
 <web-application>semispace-war</web-application>

http://www.terracotta.org/web-sessions/
http://www.terracotta.org
http://www.springframework.org/

 <web-application>semispace-google</web-application>
 </app-group>
 </app-groups>
 -->
 <instrumented-classes>
 <include>
 <class-expression>org.semispace.HolderContainer</class-expression>
 <honor-transient>true</honor-transient>
 </include>
 <include>
 <class-expression>org.semispace.Holder</class-expression>
 <honor-transient>true</honor-transient>
 </include>
 <include>
 <class-expression>org.semispace.HolderContainer</class-expression>
 <honor-transient>true</honor-transient>
 </include>
 <include>
 <class-expression>org.semispace.HolderElement</class-expression>
 <honor-transient>true</honor-transient>
 </include>
 <include>
 <class-expression>org.semispace.EventDistributor</class-expression>
 <honor-transient>true</honor-transient>
 </include>
 <include>
 <class-expression>org.semispace.SemiSpaceStatistics</class-expression>
 <honor-transient>true</honor-transient>
 </include>
 <include>
 <class-expression>org.semispace.event.SemiEvent</class-expression>
 </include>
 <include>
 <class-expression>org.semispace.event.SemiExpirationEvent</class-expression>
 </include>
 <include>
 <class-expression>org.semispace.event.SemiAvailabilityEvent</class-expression>
 </include>
 <include>
 <class-expression>org.semispace.event.SemiTakenEvent</class-expression>
 </include>
 <include>
 <class-expression>org.semispace.event.SemiRenewalEvent</class-expression>
 </include>
 </instrumented-classes>
 <locks>

 <autolock>
 <method-expression>* org.semispace.HolderContainer.removeHolderById(..)</method-
expression>
 <lock-level>write</lock-level>
 </autolock>
 <autolock>
 <method-expression>*
org.semispace.HolderContainer.removeEmptyHeads(..)</method-expression>
 <lock-level>write</lock-level>
 </autolock>
 <autolock>
 <method-expression>* org.semispace.HolderContainer.addHolder(..)</method-
expression>
 <lock-level>write</lock-level>
 </autolock>
 <autolock>
 <method-expression>* org.semispace.HolderContainer.findById(long,String)</method-
expression>
 <lock-level>read</lock-level>
 </autolock>
 <autolock>
 <method-expression>* org.semispace.HolderContainer.size(..)</method-expression>
 <lock-level>read</lock-level>
 </autolock>
 <autolock>
 <method-expression>*
org.semispace.HolderContainer.retrieveGroupNames(..)</method-expression>
 <lock-level>read</lock-level>
 </autolock>
 <autolock>
 <method-expression>* org.semispace.HolderContainer.waitHolder(..)</method-
expression>
 <lock-level>write</lock-level>
 </autolock>
 <autolock>
 <method-expression>* org.semispace.HolderContainer.readHolderWithId(..)</method-
expression>
 <lock-level>read</lock-level>
 </autolock>
 <autolock>
 <method-expression>*
org.semispace.HolderContainer.retrieveClassNames(..)</method-expression>
 <lock-level>read</lock-level>
 </autolock>

 <autolock>

 <method-expression>* org.semispace.HolderElement.size(..)</method-expression>
 <lock-level>read</lock-level>
 </autolock>
 <autolock>
 <method-expression>* org.semispace.HolderElement.removeHolderById(..)</method-
expression>
 <lock-level>write</lock-level>
 </autolock>
 <autolock>
 <method-expression>* org.semispace.HolderElement.addHolder(..)</method-
expression>
 <lock-level>write</lock-level>
 </autolock>
 <autolock>
 <method-expression>* org.semispace.HolderElement.toArray(..)</method-expression>
 <lock-level>read</lock-level>
 </autolock>
 <autolock>
 <method-expression>* org.semispace.HolderElement.iterator(..)</method-expression>
 <lock-level>read</lock-level>
 </autolock>
 <autolock>
 <method-expression>* org.semispace.HolderElement.isWaiting(..)</method-expression>
 <lock-level>read</lock-level>
 </autolock>
 <autolock>
 <method-expression>* org.semispace.HolderElement.waitHolder(..)</method-
expression>
 <lock-level>write</lock-level>
 </autolock>

 <autolock>
 <method-expression>* org.semispace.Holder.setLiveUntil(long)</method-expression>
 <lock-level>write</lock-level>
 </autolock>
 <autolock>
 <method-expression>*
org.semispace.EventDistributor.distributeEvent(DistributedEvent)</method-expression>
 <lock-level>write</lock-level>
 </autolock>
 </locks>
 <roots>
 <root>
 <field-name>org.semispace.HolderContainer.instance</field-name>
 </root>
 </roots>

 <!-- transient-fields>
 <field-name>org.semispace.SemiSpace.listeners</field-name>
 <field-name>org.semispace.SemiSpace.admin</field-name>
 <field-name>org.semispace.SemiSpace.xStream</field-name>
 </transient-fields -->
 <!-- distributed-methods>
 <method-expression>void
org.semispace.SemiSpace.notifyListeners(org.semispace.EventDistributor)</method-
expression>
 </distributed-methods -->
 <distributed-methods>
 <method-expression>void
org.semispace.EventDistributor.distributeEvent(org.semispace.DistributedEvent)</method-
expression>
 </distributed-methods>
 </dso>

-

-

-

2.2.6. Spring configuration

If you are running within a webapp, and are using spring, you can add the following. Note that this
is not relevant if you use the SemiSpace TIM. You will need a named configuration element for
each of your webapps. Depending on your scenario, you may find it easier / more maintainable to
just define and use the application in a POJO manner.

 <!--
 Clustering Spring no longer requires special configuration. For more information, see
http://www.terracotta.org/spring.
 <spring>
 <jee-application name="*">
 <application-contexts>
 <application-context>
 <paths>
 <path>*.xml</path>
 </paths>
 <beans>
 The other beans to share beside semispace
 SemiSpace is covered in the dso configuration, and we do NOT need: <bean
name="semispace" />
 </beans>
 </application-context>
 </application-contexts>
 </jee-application>
 </spring>-->

2.3. You can only mix some Terracotta runtime
configurations

Mixing runtime configurations can give you some hassle. Terracotta lives best when running one
of the following:

Running with a POJO container, such as a standalone console program.

Running Spring configured in a webapp.

Running POJO-invoked in a webapp.

It is possible to mix some configurations, but it may involve an effort. The reason and explanation
can be found here: Object identity in Terracotta is dependent on the classLoaderName + fully

qualified reference name .

http://forums.terracotta.org/forums/posts/list/505.page
http://forums.terracotta.org/forums/posts/list/505.page

2.3.1. Mixing console app and webapp

Presuming you are running with Jetty, the following extra parameter will interface your console
application with your webapp:

 -Dcom.tc.loader.system.name="Jetty.path:/some_path"

Terracottas documentation explains this in greater detail. The problem is even larger if you are
using spring to configure the application.

2.4. Running with Terracotta within Eclipse

For test purposes, or ease of development, you may want to run Terracotta within Eclipse.

Besides Eclipse itself, you will need the Terracotta eclipse plugin . Activate your project as a

"Terracotta DSO project".

If you do not have a tc-config.xml file already, create one as explained above.

Presumably, your program is already using SemiSpace. Then the easiest way of testing the
Eclipse / Terracotta easiest way of performing tests, is to create a junit test . Then choose to run

the tests as "Terracotta DSO junit test". This will prompt you to start a local Terracotta server,

which you may have to do, depending on the contents of you tc-config.xml file.

Notice that you probably want to remove the TIM module from the configuration whilst running
under Eclipse, as this will make the integration fail. Presumably, you do not need Jetty integration
in Eclipse.

http://www.eclipse.org
http://www.terracotta.org/confluence/display/docs/DSO+Eclipse+Plugin+Guide
http://www.junit.org/

3. Tutorials

3.1. Introduction to tutorials

The tutorials will try to introduce different aspects of SemiSpace, and how to use it.

You can decide yourself whether or not you want to download any sources. The tutorial is
intended to be self contained, and the examples should be possible to followed by instruction
alone.

3.1.1. Downloading the source code (optional)

If you want to follow the source more closely than the snippets offer, you can download the source
code by checking it out with subversion from http://www.semispace.org/svn/ Choose a given tag

or trunk.

You can also check out individual project parts with your favorite IDE.

3.1.1.1. Building the source code

Building the source code is quite straight forward with Maven2:

 mvn clean install

You will need version 2.2.1, or later, of maven.

If you get a dependency error due to missing JAXB, you need to install JAXB as explained in the

preliminaries chapter.

You can skip the test by using the dev profile:

 mvn -Denv=dev clean install
 # or in the regular maven way:
 mvn -Dmaven.test.skip=true

http://www.semispace.org/svn/
http://maven.apache.org
./preliminaries.html
./preliminaries.html

-

-

-

-

Notice that the essential project is semispace-main - the rest is for your convenience. If you have
problems compiling (typically because of missing jar libraries), you can try to comment out
optional modules in the parent pom.

3.1.1.2. Failing comet tests

The comet tests need a running comet instance. This is most easily obtained by

compiling the complete project without any tests

check out semispace-comet in a separate directory

run the comet server with

 mvn jetty:run

run the tests in the source version that contain the complete project.

3.1.2. Terracotta for distribution

Many of the examples will use terracotta for distribution.

The following environmental variables are used in the tutorials:

 export TC_INSTALL_DIR=/some/path/to/terracotta-3.X/

 export TC_CONFIG_PATH="localhost:9510"
 # or
 export TC_CONFIG_PATH=/some/path/to/tc-config.xml

You use TC_CONFIG_PATH="localhost:9510"if you want the Terracotta server to give you the
configuration during startup.

3.2. Stand alone operation

In order to use the space in a stand alone fashion in your java code, just obtain a reference to it,
and use it. You will need to use threading in order to benefit from it, as you typically will have an
application thread and a worker thread:

http://www.terracotta.org

 SemiSpaceInterface space = SemiSpace.retrieveSpace();

3.3. General space usage

In order to insert an element into the space, use write:

 Element element = new Element();
 element.setName(args[0]);
 element.setValue(args[1]);
 SemiSpaceInterface space = SemiSpace.retrieveSpace();
 // Life time of 5 minutes.
 space.write(element, 1000*5*60);
 System.out.println("Element inserted successfully:
"+element.getName()+"="+element.getValue());

Similarly, in order to read an element in the space, use:

 Element searchFor = new Element();
 searchFor.setName(args[0]);
 SemiSpaceInterface space = SemiSpace.retrieveSpace();
 // reading with a timeout of 60 seconds
 Element read = space.read(searchFor, 60000);
 if (read == null) {
 System.out.println("Could not find an element with name "+searchFor.getName());
 } else {
 System.out.println("Element found: "+read.getName()+"="+read.getValue());
 }

In order to remove an element from the space do:

 Element read = space.take(searchFor, 60000);

The essential difference, is the read statement. Read can be performed repeatedly, whereas take
will remove the object from the space.

3.4. Using notify

Notify gives you an event containing the XML source of the element which matched the
registration.

A simple example of this is the following. First you need to register a notification:

 SemiSpaceInterface space = SemiSpace.retrieveSpace();
 SemiEventRegistration eventRegistration = space.notify(new Element(), this, 60 *
1000 * 60);
 // If this comment is seen in the doc, it is because mavens apt book generator has
 // become confused with the code snippets.

 for (int i=0 ; i < 10 ; i++) {
 try {
 Thread.sleep(1000 * 10);
 } catch (InterruptedException e) {
 // Ignore
 }
 }
 /* If you like to cancel the notification, perform
 the following: */
 eventRegistration.getLease().cancel();
 } catch (RuntimeException e) {
 e.printStackTrace();
 }

 }

 }

In the notification method itself, you perform whatever you want in case of notification. The
following just prints a statement that explains that an object matching the template is found in the
space.

 public void notify(SemiEvent theEvent) {
 if (theEvent instanceof SemiAvailabilityEvent) {
 System.out.println("Incoming element which concurs with template has arrived.");
 Element element = (Element) SemiSpace.retrieveSpace().takeIfExists(new Element());
 if (element ==null) {
 System.out.println("Could not take element that was flagged as available");
 } else {
 System.out.println("Read element from space:
"+element.getName()+"="+element.getValue());
 }
 }
 }

Sometimes, you will try to take the Object that has been transported with the notification. Be
aware that the object may already have disappeared (for instance if it has already been taken).
Therefore you always need to test your taken object for null.

3.4.1. Notify and disappearing instance.

You may think that a long living notification may be a problem if the instance falls down when
being distributed with Terracotta. This is not the case. The notification lives only within the server
instance in question, and if it disappears, it does not matter - the notification just disappears with
it. However, the statistics will become wrong - in the count of number of listeners, as the listener is
not de-registered correctly. This is inconsequential.

If you like to cancel the registration, you can do this on the registration lease.

3.5. Simple terracotta interaction

The purpose of the tutorial is to give you an insight in how SemiSpace is intended to work together
with Terracotta. Terracotta needs to be configured as explained in the installation chapter.

3.6. Running the sources

Presumably, you have the sources downloaded and and installed. Perform:

 cd semispace-tutorials/semispace-tutorial
 mvn clean install
 mvn assembly:assembly
 cd target
 unzip tutorial.zip
 chmod a+x *.sh

Start the Terracotta server as explained in the Terracotta chapter. Run the java program in order

to insert a value into the space:

 ./insert.sh something value

You should see a message at the bottom similar to:

./installation.html
./terraconfig.html

 Element inserted successfully: something=value

Then try to retieve it:

 ./take.sh something

This should render:

 Element found: something=value

Try to run the take.sh script again. This should not find another instance, and the output should be
(after a waiting time, due to 1 minute timeout in wait):

 Could not find an element with name something

If you get any errors, it is likely that you have not configured the environment correct, i.e. forgotten
the TC_INSTALL_DIR variable.

The take.sh script performs a take instead of a read, the difference being that the element is
removed from the space.

 Trying notification

This program only works when distributed with Terracotta. This is as notification is not exposed
over webservices. Furthermore, as this program hangs in an endless loop, you must press CTRL-
C to stop it.

The program will use notify, and subscribe to all objects of type Element. This means that you get
an output every time you perform an insert into the space. Start the program with notify.sh.

When using the notify.sh , the insert.sh program may report an error. If it does, it is just because it
is shutting down at the moment the event is being distributed.

3.7. What can you use this to do

-

-

-

-

-

-

-

-

-

-

-

-

This simple example lets you experiment with the Terracotta configuration. Let's say you want to
test Terracotta failover. Perform the following steps:

Modify the Terracotta "servers" configuration to include two different servers.

Start Terracotta on both servers

Run an "insert" (with insert.sh)

Stop one of the Terracotta instances

If applicable, modify your TC_CONFIG_PATH value

Run a "take": Expect everything to still work.

If you are running the "notify" program, you should get an output for all elements added.

3.8. Case study: Google maps

The purpose of this tutorial is to illustrate SemiSpace usage and space interaction, by making a
server able to query and use Google maps API . In order to query Google, you need have a

Google maps key. You can still follow the example, even if you do not have a key yet; You can

see the interaction in the logs.

The tutorial explains how you can set up a server that takes care of the google communication. It
also demonstrates how you can limit which clients that are allowed to use the server.

The swing client also demonstrates how you can use the actor pattern for internal communication.

None of the examples are particularly refined, but they should offer a starting point of
understanding the SemiSpace technology, and what you can do with it.

3.9. The webapp server

The purpose of the webapp server, is to create the a control application for google map search.
Since all searches are performed on a single server, you can:

Keep your google application key private

Cache content lookup

Refine existing search result by modifying the cache

Control which clients that are allowed to connect and use the service

Control to content lookup rate, for instance disallow more than 1 lookup per second

3.10. The swing client

The swing client offers a simple interface, which allows you to log in onto the webapp server.
Once logged in, you can perform address lookup queries that are performed on the server. The

http://code.google.com/apis/maps/
http://code.google.com/apis/maps/signup.html
http://en.wikipedia.org/wiki/Actor_model

communication is performed over web services.

The swing setup is performed with SwiXML, which is a sensible and pragmatic XUL framework.

3.11. Starting the webapp and client

The following explains startup of a standalone (development) server without terracotta.
Presumably you have, in the top level directory, successfully run

 mvn clean install

3.11.1. Starting the webapp

In order to start the webapp, either put the war file in a suitable webapp container, or run the
following:

 cd semispace-tutorials/semispace-google-webapp
 mvn jetty:run

When you look at http://localhost:8080/semispace-google/ you should see an entry page. This

page allows you to enter users and google key. Notice the link to the WSDL file:

http://localhost:8080/semispace-google/services/tokenspace?wsdl This is the endpoint when

connecting to the webapp from the standalone application.

3.11.1.1. Alternative to mvn jetty:run

A standalone application has been created as part of the build. Take a peek in the Jetty /

Terracotta integration chapter for how to run it.

3.11.2. Starting the client

Enter the directory where the client reside, and find the target directory:

 cd semispace-tutorials/semispace-google-client/target

http://www.swixml.org
http://en.wikipedia.org/wiki/XUL
http://localhost:8080/semispace-google/
http://localhost:8080/semispace-google/services/tokenspace?wsdl
./terragoogle.html
./terragoogle.html

You should find a zip file in this directory, which can be used in the following manner:

 mkdir some_directory
 cd some_directory
 unzip ../google-client.zip
 chmod a+x gclient.sh

If you do not run a unix-based operating system, you need to create your own startup script.

Start the client with:

 ./gclient.sh http://localhost:8080/semispace-google/services/tokenspace

This shall give you the login page.

3.11.3. Client / server interaction

Without having registered neither users nor google key in the webapp, try enter a (spurious) name
and password in the login box, and press login. Notice the log messages.

Now, register a name and password in the webapp. Then try to log in again with the client. The
screen should change to allow search expressions.

Enter an address to search - the same way you would do it in Google maps for and press submit.

Try, for example,

 Kongensgate 14, Oslo, Norway

The server should log the query, but as no google map key has yet been registered, you naturally
do not get a search result. On the client, the query times out because not answer is received.

Register a key and try to search again. You should see the search expression in the server log,
and the client should display the information that was retrieved from google.

Notice that if you try to search again with the same key, you receive the cached version from the
server.

Try and remove the user by registering a user with the same name as an existing user, but with an
empty password. When you try to search in the application, the login box appears again, as the

http://maps.google.com

user is no longer authenticated.

If you do not wish to communicate over webservices, the alternative is to connect up your space
with terracotta.

There are many was to do this, depending on how you designed your application. The way that is
chosen here, is to use a webapp container - simply because the lookup application is designed as
a webapp.

3.12. Terracotta

You need Terracotta with the the jetty TIM module. This has been explained in the installation

chapter.

3.13. Jetty

For your convenience, a bundled version of jetty has been created. You could, of course, choose
a different app server. But these instructions are for jetty.

If you like to set up your own jetty server and instance, you find instructions here: Clustering Web

Applications.

3.13.1. Unpacking jetty application

For your convenience, a bundled jetty application has been created in semispace-google-app .
Unpack the zip file and run the preliminary installation script:

 mkdir somewhere
 cd somewhere
 unzip <wereever>/google-app.zip
 cd bin
 chmod a+x afterInstallation.sh
 ./afterInstallation.sh

Notice that you get informed to set some environment variables. These are needed for Jetty to
run. The bundled Jetty script is the same script that follows the standard distribution, with the
addition of Terracotta specific variables, as explained below.

If you do not add the Terracotta variables, the Jetty instance runs as a standalone server.

./terraconfig.html
./terraconfig.html
http://www.terracotta.org/documentation/ga/product-documentation-12.html
http://www.terracotta.org/documentation/ga/product-documentation-12.html

3.13.2. Environment variables

You need the following environment variables for connecting to the Terracotta server:

 export TC_INSTALL_DIR=<path_to_local_Terracotta_home>
 export TC_CONFIG_PATH="localhost:9510"

These variables are needed for all instances that shall communicate over Terracotta.

3.14. Distributing jetty instances

You need to have unzipped the google-app.zip in two different directories, lets call them A and B.
You also need to have started the Terracotta server, as explained in Terracotta configuration

chapter.

Recap:

 export TC_INSTALL_DIR=<where terracotta is installed>
 ${TC_INSTALL_DIR}/bin/start-tc-server.sh -f some/path/to/config/tc-config.xml

3.14.1. Starting up the first jetty instance

It is presumed that you already have configured the paths as applicable to your environment, i.e.
exported the variables that are printed after running afterInstallation.sh and exporting
TC_INSTALL_DIR and TC_CONFIG_PATH .

Run in the jetty bin directory:

 ./jetty.sh start

You should see something similar to:

 Using Terracotta
 Starting BootJarTool...
 2009-06-23 13:09:30,165 INFO - Terracotta 3.2.0, as of

./terraconfig.html

3.14.2. Starting up the second jetty instance

Unzip google-app.zip into a different directory. You need to use a different port as we are running
the service on the same machine. If you use two different machines, this, naturally, does not
apply. (However, your configuration references would need to be tailored to support this.)

Change the jetty port in etc/jetty.xml from

 <Set name="port"><SystemProperty name="jetty.port" default="8080"/></Set>

to

 <Set name="port"><SystemProperty name="jetty.port" default="8081"/></Set>

3.15. Testing the application:

Open two browser windows: http://localhost:8080/semispace-google/index.html and

http://localhost:8081/semispace-google/index.html

This represents your two servers A and B, and should present the same entry page.

Submit a new user in one of the windows. You see the user list is updated with the user. Now,
press the index button in the other window. You shall see the same user in that window.

3.15.1. Using the client

You can use the client application over webservices on either servers. The respective endpoints
would be: http://localhost:8080/semispace-google/services/tokenspace and

http://localhost:8081/semispace-google/services/tokenspace

Example:

 ./gclient.sh http://localhost:8080/semispace-google/services/tokenspace

3.15.1.1. Integrating directly from the client

http://localhost:8080/semispace-google/index.html
http://localhost:8081/semispace-google/index.html
http://localhost:8080/semispace-google/services/tokenspace
http://localhost:8081/semispace-google/services/tokenspace

Direct integration from the client is as of Terracotta version 3.x not possible. The problem is that
the client does not use spring for setting up the SemiSpace connection, whereas the webapp
does, and this does not mix well.

3.15.2. Stopping the server

In the Jetty bin directory do:

 ./jetty.sh stop

4. SemiSpace and Cometd

SemiSpace has a module which allows JavaScript to communicate to an cometd -enabled

webserver. The javascript interface mimics the Java interface as closely as possible.

We are presently using Cometd-2.x.

4.1. Overview of semispace-comet

The semispace-comet module of SemiSpace consists of the following parts:

semispace-comet-server The webapp which will answer the
JavaScript queries

semispace-comet-client An emulation of the JavaScript client
behaviour. Can be used for emulating a
client for test purposes, or for bridging two
server implementations

semispace-comet-common Transport objects and functionality shared
between the client and server
implementation

semispace-comet-webapp An example webapp, which gives you
inspiration of how to configure your own

semispace-comet-app A standalone jetty server which you can
easily run on the command line

JavaScript The web client functionality resides in
JavaScript which you simply downloaded
and add to your webapp

4.2. Installation

When using semispace-comet, you need to install / prepare the server side and the JavaScript
side. On the server side is a matter of setting up the webapp with dependencies in a manner

http://www.cometd.org/
../apidocs/org/semispace/SemiSpaceInterface.html

similar to semispace-comet-webapp (which indeed is an example). On the client side, you need to
copy down the JavaScript files, and put them in the correct directories.

A good starting point is to examine the projects in semispace-comet, and semispace-comet-
webapp in particular. That sub project contains examples of use.

4.3. Instructions for use: TBA

We are on the way of consolidating and organizing the examples in a manner that will suit a
presentation like this better. However, we have not got around to do it yet. Sorry.

4.3.1. Dojo binding

TBA

4.3.2. JQuery binding

TBA

Technical overview over channels and parameters.

4.4. Communication channel overview

The communication between the comet client and java webapp comet server is asynchronous.
The communication is initiated with a call, and returned with a reply (except in the case of notify,
which is a special case).

The communication channels are as follows:

Channel purpose

/semispace/call/read/ number Initiate a read request.

/semispace/reply/read/ number Reply of a read, with the payload being the
result if it was obtained.

/semispace/call/take/ number Initiate a take request.

/semispace/reply/take/ number Result of take.

/semispace/call/write/ number Insert an object into the space. This is a
synchronous operation when using the
comet java client.

/semispace/reply/write/ number Acknowledge that the element has been
written.

/semispace/call/notify/ number / type Register a notification. This is a
synchronous operation when using the
comet java client.

/semispace/reply/notify/ number / type Acknowledge that the notification has been
registered.

/semispace/event/notify/ number / type Attached is a notification event.

/semispace/call/leasecancel/ number Cancel lease with callId as mapped
parameter. CallId is the number from the
notify method

/semispace/reply/leasecancel/ number Acknowledge of listener cancellation

Channel parameters are:

number
 Channel number. When having, for example, two simultaneous read operations, this
number must be different for the two operation. The easiest is to have a client side sequence
number, which is just incremented for each call.
Notification type
 The type is one of availability , expiration , taken , renewal and all . The Java client only
uses all , and the proxy will translate this into the correct response object. This is as the Java
client does not know in beforehand what kind of notification that is registered.

It does not matter if several different clients use the same channel numbers. The communication
to the client is based on the client ID, and has nothing to do with the channel number.

4.5. Parameter overview

The parameters sent over the channel are packed JSON style. Then the control elements are
extracted. The following is an overview:

Operation Parameter Significance

read duration json How long to wait for an
object if it is not in the
space. Payload to match.
First level is object type, the
second level are elements to
match. (I.e. in a person
object with firstname,
lastname, it would be
firstname=xxx). You cannot
have 2 levels.

take ... Same parameters as read

write timeToLiveMs json How long the object shall
live in the space TODO
Shall change to duration
Payload. This is the String
representation of the client
side JSON object.

notify duration json How long the notification
registration shall exist. As for
read

lease cancel callId The caller id the notification
lease is registered to.

4.6. Servlet configuration parameters

If you want to exclude either take or write as feature, you can do this in the web.xml file. This is
relevant when you have a service which shall provide a read-only interface to the clients, probably
due to data entering the space from a backend service.

Init parameter Significance

disableTake If disableTake is true, clients will be unable to
remove anything from the space

disableWrite If disableWrite is true, clients will not be able
to write anything to the space

The JavaScript client makes it possible to communicate with the SemiSpace from JavaScript. This
JavaScript client mimics the Java interface as closely as possible and makes it possible to

distribute JSON objects between the JavaScript client and the space.

Objects in the space are available as JSON objects for the JavaScript client and JSON objects
pushed to the space by the JavaScript client are available for other clients. JSON objects can also
be mapped directly to any known JAVA object and vise versa.

If you are not familiar with how to work against a space we recommend you read a simple

introduction before you proceed.

4.7. Communication introduction

The JavaScript client rely on communicating with the space trough a CometD implementation.

SemiSpace use the latest version of CometD which use a WebSocket implementation for

browsers with native WebSocket support and a the long polling Bayeux protocol for browsers not

supporting WebSockets.

4.8. Browser support

The client has been tested and proved to work at the following browsers:

Desktop:

../apidocs/org/semispace/SemiSpaceInterface.html
http://www.trygve-lie.com/blog/entry/tuple_space_in_few_words
http://www.trygve-lie.com/blog/entry/tuple_space_in_few_words
http://cometd.org/
http://svn.cometd.com/trunk/bayeux/bayeux.html

-

-

-

-

-

-

-

-

IE6 and newer

Opera 10.x and newer

FireFox 3.x and newer

Chrome 5.x and newer

Safari 3.x and newer

Mobile:

Opera Mobile 10.x and newer

Android 2.2 and newer

Fennec 2.x beta and newer

4.9. Installation

Since the JavaScript client rely on communicating with the space trough a CometD
implementation the JavaScript client need one of the JavaScript libraries CometD have bindings
too. These libraries are Dojo Kit and jQuery .

The SemiSpace JavaScript client does only use the CometD connection module in these libraries

and does not depend on any other functions in these libraries.

There are two ways to get up and running; The "custom way" and the "easy way". If your project
already are depending on one of the libraries CometD have bindings to (Dojo Kit or jQuery), the
"custom way" are the part you want to dive into. If you have no existing library and just want to get
up and running, the "easy way" are the part you should read.

4.10. The custom way

The CometD module are not part of the core functionality in these libraries and must therfore be
installed in the library of choice.

TODO: complete description....

4.11. The easy way

For your convenience the SemiSpace Comet package come with prepared builds of DojoKit and
jQuery where the CometD module have been applied. To get started, select one of the provided
prebuilt libraries for your project.

http://www.dojotoolkit.org/
http://jquery.com/
http://cometd.org/

-

4.11.1. Dojo Kit

To use Dojo Kit for communication with the SemiSpace server, include Dojo Kit:

 <script type="text/javascript" src="/semispace-comet-server/js/lib/dojo-release-
1.4.3/dojo/dojo.js"> </script>

Then include the SemiSpace JavaScript client:

 <script type="text/javascript" src="/semispace-comet-server/js/core/semispace.js"> </script>

4.11.2. jQuery

To use jQuery for communication with the SemiSpace server, include jQuery:

 <script type="text/javascript" src="/semispace-comet-server/js/lib/jquery/jquery-1.4.2.js">
</script>

Then include the SemiSpace JavaScript client:

 <script type="text/javascript" src="/semispace-comet-server/js/core/semispace.js"> </script>

4.12. Communicating with the space

The SemiSpace JavaScript client provides a common interface against the space so whatever
JavaScript library used the methods are the same among them. The SemiSpace JavaScript client
will automatically detect which JavaScript library in use so no configuration against the library are
needed to get the SemiSpace JavaScript client up running.

Connecting to the space

To make the SemiSpace JavaScript client talk to the SemiSpace server a connection need to be
stabilised. This is done by initializing the connection module.

The init method can take a connection configuration object. This object are similar to the CometD

configuration .

http://cometd.org/documentation/cometd-javascript/configuration
http://cometd.org/documentation/cometd-javascript/configuration

-

-

If you run on a default setup there should be no need to provide a connection configuration to the
init method. The most needed parameter in the configuration to override will probably be URL the
server. To override the server URL you provide a config object to the init method as follow:

When a initialization are done you can connect by executing the connection method:

Disconnecting from the space

It's possible to disconnect from the server by executing the disconnect method:

Listening in on the communication

It is also possible to listen in on the communication between the client (browser) and the server.
This can be used to get valuable information on what is going on in the browser when
communicating with the server. It can also be used to provide status messages to the user on
what is going on.

You listen in on the communication by providing a callback function to the meta listener method:

The provided callback function must take two metod variables as input. The first variable will get a
status code, ranging from 1 to 9, from the SemiSpace JavaScript library. The second variable will
get the raw communication message provided by CometD.

A popular pattern is to listen in on the status codes and provide the user with information on the
connection to the server.

The status codes are as follow

value Description

1 Handshake is done. The client has contacted
the server but no connection are set up yet

2 The client are now connected to the server.
Data can now be excanged with the server

3 The client was connected to the server but
has lost connection to the server

4 The client communicates with the server.
This will occur pretty frequently since the
client pings the server from time to time

5 The client was disconnected from the server
by the disconnect method

6 The client has subscribed to a CometD
metachannel

7 The client has unsubscribed from a CometD
metachannel

8 The client has published a message to the
server

9 The client tried to publish a message to the
server but failed

-

-

-

-

-

-

4.13. Working against the space

When a connection is set up, its possible to send and recieve JSON objects to and from the
space. This JavaScript client mimics the Java interface as closely as possible and are as follow:

write

read

readIfExist

take

takeIfExist

notify

TODO: remember release function on notify

A note on handling JSON

The JavaScript client does not stringify or parse the JSON object communicated with the space.
This is left to the implementation and must be dealt with on each communication.

Each JSON object transmitted to the space must be stringified before sent.

Example:

Each JSON object received from the space must be parsed before it can be dealt with by
JavaScript.

Example:

../apidocs/org/semispace/SemiSpaceInterface.html

5. Usage

5.1. Space interaction

It is sometimes slightly confusing to use space based logic. This chapter contains some hints and
pointers.

5.1.1. Space is not intended to be used for long term
storage

A tuple space is not intended to be used for long living data. If you have needs in this direction, an
ORM such as Hibernate will solve this better for you.

There is nothing wrong with mixing strategies, however.

5.1.2. Query timeout

When you are using the master / worker pattern, you will benefit from letting the query for the
master answer live slightly longer the life time of the query itself.

The reason for the slightly longer life of the wait for answer, is that you need to consider the worst
case time, which also includes the network traffic time, and the processing time. If you intend to
have the query live shorter, decrease both timeout values, not only one.

5.1.3. Space objects are serialized

The object identity is lost when you put the objects into the space. This can be used for simplifying
the queries, as you can reuse the object.

5.1.4. Make allowances for asynchronous operations

When programming against the space, try to make allowances for the operations being
asynchronous. When you are treating elements, they may appear out of order as you may have
more than one set of clients. If your are dependent on a certain order, you may need two keys,
representing a counter and the other an operation ID.

http://en.wikipedia.org/wiki/Object-relational_mapping
http://www.hibernate.org

5.1.5. Use objects and not primitives

In your holder object, do not use primitives, use objects instead. Otherwise, you will always query
on the primitive value, which for int will be 0 (zero). If you use Integer for int , you can omit the
value, and query on anything, as it is null.

5.1.6. Do not query on interfaces and sub class types

When you perform a query, you essentially fill out a object which shall be matched on all fields
that are filled out for a given object type. The matching is not performed on class hierarchies, i.e.,
you cannot query with a parent class and get results of a sub class type. Interfaces are also
disregarded as well.

The reason for this, is to support other languages / structures, such as ruby or php.

5.1.7. Make allowances for failure when using webservices

You need to make your application tolerate failures when running against the SemiSpace
webservices, as the webservices may not always be present. The problem you try to solve, is that
random outages create an exception which in effect stops your program.

Write your catch in a manner similar to the following:

 } catch (SemiSpaceProxyException exception) {
 log.warn("Got a problem with SemiSpace connection.", exception);
 // need to sleep in order not to hammer connection, which
 // is relevant if you are in a loop.
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 // Ignored
 }
 }

5.2. Using Spring to configure space

Spring can be used for configuration. Remember that this configuration is not interchangeable with

other configuration options, due to reasons explained in the Terracotta configuration chapter.

http://www.springsource.org/documentation
./terraconfig.html

Notice that this description is not complete, as there are several elements to configure and take
into consideration. The easiest way of working with this, is probably to start with the sources for
semispace-war, run the application with mvn jetty:run and examine the result(s).

5.2.1. Configure your webapp's beans for spring

As of Terracotta 3.2, you do not need to add anything particular in your tc-config.xml file.

The part you need, is the configuration in Spring's application-context.xml

 <!--
 The space itself. It may be distributed with terracotta, or
 be stand alone.
 -->
 <bean id="semispace" class="org.semispace.SemiSpace" scope="singleton"
 factory-method="retrieveSpace" />

The bean is used in the "normal" way, which is to say that it is either injected into a controller, or
retrieved as a bean. Notice that you do not need to configure SemiSpace for Spring, as the other
parts of the tc-config.xml covers those classes, even when they are instantiated with spring.

5.2.1.1. Exposing the web service in spring

The webservices configuration needs some more configuration in applicationContext.xml:

 <import resource="classpath:META-INF/cxf/cxf.xml" />
 <import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />
 <import resource="classpath:META-INF/cxf/cxf-servlet.xml" />

 <!--
 Definition of an unauthenticated space. Useful if you are
 within a firewall, or otherwise do not expose the
 service to the world.
 -->
 <jaxws:endpoint id="space" implementor="#spaceproxy"
 address="/space" />

 <bean id="spaceproxy"
 class="org.semispace.ws.WsSpaceImpl">

 <property name="space">
 <ref bean="semispace" />
 </property>
 </bean>

5.2.1.2. Running the CXF servlet

In addition to setting up the spring controller servlet, you need to start the CXF servlet in web.xml:

 <servlet>
 <servlet-name>CXFServlet</servlet-name>
 <servlet-class>
 org.apache.cxf.transport.servlet.CXFServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>CXFServlet</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>

This will interface with the CXF configuration you performed in applicationContext.xml.

5.2.2. JMX exposure

The application context for semispace-war is configured to expose statistical data to a JMX client.
In order to avoid setting up alternate strategies for injection of the statistical object, the data is
exposed through the SemiSpace instance itself. The problem is that it is difficult (but not
impossible) to successfully use different wiring strategies together with terracotta. SemiSpace
uses the easiest approach...

The following spring MBean configuration is used for exposing the statistic:

 <bean id="mbeanServer"
 class="org.springframework.jmx.support.MBeanServerFactoryBean">
 <!-- indicate to first look for a server -->
 <property name="locateExistingServerIfPossible" value="true" />
 </bean>
 <!--
 this bean needs to be eagerly pre-instantiated in order for the exporting to occur;
 this means that it must not be marked as lazily initialized
 -->
 <bean id="exporter"
 class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">

 <map>
 <entry key="bean:name=semiSpaceStatistics"
 value-ref="semispace" />
 </map>
 </property>
 <property name="server" ref="mbeanServer" />
 <property name="assembler">
 <bean
class="org.springframework.jmx.export.assembler.MethodNameBasedMBeanInfoAssembler">
 <property name="managedMethods">
<value>numberOfSpaceElements,numberOfBlockingRead,numberOfBlockingTake,numberOf
MissedRead,numberOfMissedTake,numberOfNumberOfListeners,,numberOfRead,numberOfT
ake,numberOfWrite
 </value>
 </property>
 </bean>
 </property>
 </bean>

You need either a container which registers and presents the JMX data, or SDK-1.6.

5.2.2.1. Examine JMX data with JConsole

With SDK-1.6 (or greater), you have jconsole available, and can connect to the bean for obtaining
statistical information.

The actor pattern framework is a powerful mechanism for inter process communication. The

framework (mainly) supports communication between actors.

One of the main benefits of the abstraction is that you can easily create an asynchronous
message based system, which is suitable for (particularly) a Swing application. As Swing (as
almost all GUI libraries) is based on a single thread model , you need to pass any real work to a

worker thread - unless you do not mind creating a sluggish application.

5.3. Utilizing actors in a Swing application

Actors in SemiSpace extend the Actor object. The object offers send , receive and the optional

methods getReadTemplates and getTakeTemplates . A typical "manager" actor will register

templates it want to react on. For instance, an OrderManager actor will want to receive Orders,

place by a Client actor.

The following declaration is annotated with SwingActor which makes the receive call executed on

the Swing thread, which is essential when you are changing values that shall be displayed in the

GUI.

 @SwingActor
 public class SwingActorSearch extends Actor {

Sending an actor query is performed with send. The example fills out an address query template,
and sends it to whichever actor that is willing to answer. The receiving actor can, of course, reside
in a server process (which is the case in the tutorial).

 AddressQuery query = new AddressQuery();
 query.setAddress(address);
 send(query);

After the "search manager" actor has performed the query, it will reply to the sender by using the

http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Event_dispatching_thread
../apidocs/org/semispace/actor/Actor.html
../apidocs/org/semispace/actor/SwingActor.html

originator identification field on the payload as destination address. This makes the answer go
directly to the actor which made the query, and the answer is given in in the receive method:

 public void receive(ActorMessage msg) {
 if (msg.isOfType(GoogleAddress.class)) {
 swingAction.setEnabled(true);
 fillArea.setText(msg.getPayload().toString());
 } else {
 log.warn("Unexpected message: "+msg.getPayload().getClass().getName());
 }
 }

5.4. Security considerations using a Tuple Space

Access to the tuple space is necessarily read / write for all clients of the space. This is analogous
to having a JDBC source which is read / write. It feels slightly different, though, as you may relate
to several clients simultaneously, not only a single EAR.

It is rather easy to create malicious clients, and you therefore need to trust your client - on some
some level.

When using the webservices module, you may want to enforce some additional constraints, such
as allowing connection only from certain IPs. Additionally, you may want to use the authenticating
token service. This will nevertheless only guarantee that the malicious user has authenticated...

The bottom line is that using the webservices module, you may want to take additional steps for
securing your space. For instance, you may want to make your connections read only, and accept
input to the space through some other channel (in order to avoid having rubbish inserted into your
space). The other channel may be a servlet endpoint, which inserts relevant data into the space.

5.5. Issues and limitations

Disappearance of admin server
If the admin server disappears or is changed, you may experience time skew problems. This is as
resynchronization takes the time from the instance identified as admin. If the difference in skew is
large, you may experience some incorrect lifetimes. This is only relevant when distributing with
Terracotta.

Webapp and console apps
Notice when having a heterogeneous system with a webapp and a console application, you need
to configure the the applications in your tc-config.xml file. More details can be found here:

Terracotta configuration manual .

http://www.terracotta.org/kit/reflector?kitID=3.2&pageID=ConfigGuideAndRef

-

-

-

Spring loaded or class loaded
You can not mix whether you load the SemiSpace with Spring or with from the java objects

directly, and need to choose one or the other.

More than one terracotta-loaded webapp on the same server
You can not deploy more than one SemiSpace-enabled war on one server, unless you use
different roots in the tc-config.xml file. The error terracotta gives you is: "Perhaps you have the
same root name assigned more than once to variables of different types. " This problem is due to
the webapp class loader. In the tutorial project, this problem is solved by using webservices
locally.

You can solve this problem with grouping your web applications in the tc-config.xml file.

Even though you can share classes between a standalone app and a webapp (and several
standalone webapps), you still cannot share objects between webapps in the same container.
Please see:

https://jira.terracotta.org/jira/browse/CDV-112 (Marked as closed)

https://jira.terracotta.org/jira/browse/CDV-272 (Marked as solved)

https://jira.terracotta.org/jira/browse/CDV-81

A simple workaround is to use different processes for each war. The only problem with this, is that
the shared wars need to be equal. This should not be necessary, but as of Terracotta version
3.0.1, I did not manage to get it to work. Even when having an app-groups configuration. This may
have something to do with the spring configuration.

This boils down to the following: When having a complex setup with many different applications,
make sure they can be distributed early. If you wait to long before running into a problem, you
have a real risk of having to modify your archetecture on an ad hoc basis, which is suboptimal - to
say the least.

You may need to download sun jars
Some of the dependencies, may demand that you have downloaded some 3rd party jars from
Sun. If you only use semispace-main, this is not relevant, as it does not have any such
dependencies. Read more about this in Mavens guide for coping with sun jars.

Changed fields during class upgrade will break your runtime
The data which is stored in semispace, is your objects as XML. Therefore, a change in, lets say,
field names will result in an error when the object has been read from the space. If you are making
changes to your object, which is not compatible with existing contents in the space, you need to
remove all relevant elements from the space first.

Do not insert inner classes
When inserting inner classes, XStream will add a reference to the outer class - in toto. This can
lead to unexpected and devastating results, particularly when using the persistence add-on. In the
best case, you just get an unexpected increase of size. Worst case, you get severe faults due to
non-serializability of the element.

http://www.springframework.org
https://jira.terracotta.org/jira/browse/CDV-112
https://jira.terracotta.org/jira/browse/CDV-272
https://jira.terracotta.org/jira/browse/CDV-81
http://maven.apache.org/guides/mini/guide-coping-with-sun-jars.html

Be careful with protected fields
In order to reduce visibility for a (transport) class, it may be tempting to change a field to
protected. This will make SemiSpace disregard the field in total, which leads to confusing query
results, as the field would not be part of a query. Remember: All fields that are going to be used
for queries need to be public. However, you can have as many private and protected fields as you
like - as long as they are not part of a query.

XML will expose all variables
When transporting an object over the web services interface, all fields will be exposed, as XML
does not differentiate between private and public fields. Bear this in mind when constructing
transport objects, as you could introduce side effects when querying on the space with XML.

Copyright 2008 Erlend Nossum

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and
limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

	1. Introduction
	1.1. Introduction
	1.1.1. Differences from traditional implementations.
	1.1.1.1. SemiSpace does not use Jini
	1.1.1.2. Terracotta is used for distribution
	1.1.1.3. SemiSpace uses XML
	1.1.1.4. Query on first level depth
	1.1.1.5. All this implies:

	1.2. Do not distribute for its own sake
	1.2.1. Not everything is a nail

	1.3. Reasons for using SemiSpace
	1.3.1. Failover and load balancing
	1.3.2. Time bound processing
	1.3.3. Avoiding spiraling death
	1.3.4. Inherent caching
	1.3.5. Divide and conquer your program

	2. Installation
	2.1. Preliminaries
	2.1.1. XStream support jars
	2.1.2. Sun jars

	2.2. Configuration of Terracotta
	2.2.1. Using Maven for SemiSpace TIM reference
	2.2.2. Jetty TIM module
	2.2.3. Starting the server
	2.2.4. Sharing the configuration with clients
	2.2.5. POJO configuration
	2.2.6. Spring configuration

	2.3. You can only mix some Terracotta runtime configurations
	2.3.1. Mixing console app and webapp

	2.4. Running with Terracotta within Eclipse

	3. Tutorials
	3.1. Introduction to tutorials
	3.1.1. Downloading the source code (optional)
	3.1.1.1. Building the source code
	3.1.1.2. Failing comet tests

	3.1.2. Terracotta for distribution

	3.2. Stand alone operation
	3.3. General space usage
	3.4. Using notify
	3.4.1. Notify and disappearing instance.

	3.5. Simple terracotta interaction
	3.6. Running the sources
	3.7. What can you use this to do
	3.8. Case study: Google maps
	3.9. The webapp server
	3.10. The swing client
	3.11. Starting the webapp and client
	3.11.1. Starting the webapp
	3.11.1.1. Alternative to mvn jetty:run

	3.11.2. Starting the client
	3.11.3. Client / server interaction

	3.12. Terracotta
	3.13. Jetty
	3.13.1. Unpacking jetty application
	3.13.2. Environment variables

	3.14. Distributing jetty instances
	3.14.1. Starting up the first jetty instance
	3.14.2. Starting up the second jetty instance

	3.15. Testing the application:
	3.15.1. Using the client
	3.15.1.1. Integrating directly from the client

	3.15.2. Stopping the server

	4. SemiSpace and Cometd
	4.1. Overview of semispace-comet
	4.2. Installation
	4.3. Instructions for use: TBA
	4.3.1. Dojo binding
	4.3.2. JQuery binding

	4.4. Communication channel overview
	4.5. Parameter overview
	4.6. Servlet configuration parameters
	4.7. Communication introduction
	4.8. Browser support
	4.9. Installation
	4.10. The custom way
	4.11. The easy way
	4.11.1. Dojo Kit
	4.11.2. jQuery

	4.12. Communicating with the space
	4.13. Working against the space

	5. Usage
	5.1. Space interaction
	5.1.1. Space is not intended to be used for long term storage
	5.1.2. Query timeout
	5.1.3. Space objects are serialized
	5.1.4. Make allowances for asynchronous operations
	5.1.5. Use objects and not primitives
	5.1.6. Do not query on interfaces and sub class types
	5.1.7. Make allowances for failure when using webservices

	5.2. Using Spring to configure space
	5.2.1. Configure your webapp's beans for spring
	5.2.1.1. Exposing the web service in spring
	5.2.1.2. Running the CXF servlet

	5.2.2. JMX exposure
	5.2.2.1. Examine JMX data with JConsole

	5.3. Utilizing actors in a Swing application
	5.4. Security considerations using a Tuple Space
	5.5. Issues and limitations

